Search results for "optimal experimental design"

showing 1 items of 1 documents

A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data

2021

The current exponential increase of spatiotemporally explicit data streams from satellite-based Earth observation missions offers promising opportunities for global vegetation monitoring. Intelligent sampling through active learning (AL) heuristics provides a pathway for fast inference of essential vegetation variables by means of hybrid retrieval approaches, i.e., machine learning regression algorithms trained by radiative transfer model (RTM) simulations. In this study we summarize AL theory and perform a brief systematic literature survey about AL heuristics used in the context of Earth observation regression problems over terrestrial targets. Across all relevant studies it appeared that…

Earth observation010504 meteorology & atmospheric sciencesComputer scienceActive learning (machine learning)Science0211 other engineering and technologiesEnMAP02 engineering and technologycomputer.software_genre01 natural sciencesKriging021101 geological & geomatics engineering0105 earth and related environmental sciencesData processingData stream miningQSampling (statistics)15. Life on landquery strategieshyperspectraloptimal experimental designGeneral Earth and Planetary SciencesData miningHeuristicsLiterature surveycomputerGaussian process regressionRemote Sensing
researchProduct